STATISTICS (C) UNIT 2

TEST PAPER 9

1.	A video rental shop needs to find out whether or not videos have been rewound when they are returned; it will do this by taking a sample of returned videos			
	(i) State one advantage and one disadvantage of taking a sample.	[2]		
	(ii) Criticise the sampling method of looking at just one particular shelf of videos.	[2]		
2.	The random variable X is modelled by a binomial distribution $B(n, p)$, with $n = 20$ and p			
	unknown. It is suspected that $p = 0.3$.			
	(i) Find the critical region for the test of $H_0: p = 0.3$ against $H_1: p \neq 0.3$, at the 5%			
	significance level.	[3]		
	(ii) Find the critical region if, instead, the alternative hypothesis is $H_1: p < 0.3$.	[3]		
3.	A random variable X has the distribution B(80, 0.375).			
	(i) Write down the mean and variance of X.	[2]		
	(ii) Use the Normal approximation to the binomial distribution to estimate $P(X > 40)$.	[4]		
4.	The length of time taken on a daily journey is normally distributed, with mean 13.6 minutes			
	and standard deviation 4·1 minutes			
	(i) Find the probability that the journey takes longer than 20 minutes.	[2]		
	(ii) I wish to state a journey time which I know I will achieve in 90% of cases. What time	;		
	should I give?	[3]		
	(iii) Find the probability that the mean time in 5 days' journeys is less than 10 minutes.	[4]		
5.	A traffic analyst is interested in the number of heavy lorries passing a certain junction.			
	He counts the number, x, of lorries passing in each of 100 five-minute intervals, and gets the			
	following results: $\sum x = 285$, $\sum x^2 = 1117$.			
	(i) Calculate unbiased estimates of the mean and the variance of X.	[3]		
	(ii) Give a reason for thinking that X can be modelled by a Poisson distribution.	[1]		
	An environmental group claims that the distribution of X is indeed Poisson, but that the mean			
	is higher and is in fact 4.2. It is also known that the presence of 10 or more lorries in any five-			
	minute interval will cause severe congestion.			
	(iii) Assuming the environmentalists are right, find the probability of 10 or more lorries			
	passing in a randomly chosen five-minute interval.	[3]		
	(iv) If, in the very first interval, only one lorry is counted, decide whether this is evidence			
	against the environmentalists' claim, at the 5% significance level.	[3]		

STATISTICS 2 (C) TEST PAPER 9 Page 2

- 6. The random variable X has a continuous uniform distribution on the interval $a \le X \le 3a$.
 - (i) Without assuming any standard results for this type of distribution, prove that μ , the mean value of X, is equal to 2a and derive an expression for σ^2 , the variance of X, in terms of a.
 - (ii) Find the probability that $|X \mu| < \sigma$ and compare this with the same probability when x is modelled by a Normal distribution with the same mean and variance. [6]
- 7. Two people are playing darts. Peg hits points randomly on the circular board, whose radius is a. The distance of the point that she hits from the centre O of the board is modelled by the continuous random variable R.
 - (i) Show that the probability that $R \le r$ is given by

$$P(R \le r) = 0 \qquad r < 0,$$

$$P(R \le r) = \frac{r^2}{a^2} \qquad 0 \le r \le a,$$

$$P(R \le r) = 1 \qquad r > a,$$

and hence show that the probability density function for R is given by

$$f(r) = \frac{2r}{a^2} \qquad 0 \le r \le a,$$

$$f(r) = 0 \qquad \text{otherwise.} \qquad [6]$$

(ii) Find the mean distance from O of the points that she hits. [2]

Bob, a more experienced player, aims for O, and the points he hits have a distance X from O whose probability density function is

$$g(x) = \frac{2}{a} - \frac{2x}{a^2}$$
 0 < x < a,

$$g(x) = 0$$
 otherwise.

By sketching a graph of g(x),

- (iii) explain why this function shows that the Bob is aiming for O. [3]
- (iv) Prove that g(x) is indeed a probability density function [2]

STATISTICS 2 (C) TEST PAPER 9: ANSWERS AND MARK SCHEME

1.	(i) Quicker to use a sample, but it may be inaccurate(ii) One particular sort, e.g. horror, may be unrepresentative	B1 B1 B2	4
2.	 (i) From tables, extreme 2.5% tails are given by X ≤ 1 and X ≥ 11, so this is the critical region (ii) The bottom 5% tail is given by the region {0, 1, 2} 	M1 A1 A1 M1 M1 A1	6
3.	(i) Mean = $80 \times 0.375 = 30$, variance = $80 \times 0.375 \times 0.625 = 18.75$ (ii) $X \sim B(80, 0.375) \approx N(30, 18.75)$ P(X > 40) = P(X > 40.5) = P(Z > 10.5/4.33) = P(Z > 2.42) = $1 - 0.9922 = 0.0078$	B1 B1 B1 M1 A1 A1	6
4.	(i) $P(X > 20) = P(Z > 6.4/4.1) = P(Z > 1.561) = 1 - 0.9407 = 0.059$ (ii) 90th percentile given by $z = 1.282$, so $T = 13.6 + 1.282 \times 4.1 = 18.9$ minutes (iii) \overline{X} is distributed $N(13.6, 4.1^2/5)$, so $P(\overline{X} < 10)$ $= P(Z < -3.6/(4.1/\sqrt{5})) = P(Z < -1.963) = 0.0248$		9
5.	(i) Mean = $285/100 = 2.85$ Variance = $1117/99 - (100/99) \times 2.85^2 = 3.08$ (ii) Mean \approx Variance (iii) $H_0: \lambda = 4.2$ Under H_0 , $P(X > 9) = 1 - 0.9889 = 0.0111$ (iv) Under H_0 , $P(X < 2) = 0.0780 > 5\%$ so do not reject H_0	B1 M1 A1 B1 B1 M1 A1 M1 A1 A1	10
6.	(i) $f(x) = \frac{1}{2a}$, $a \le x \le 3a$. $E(X) = \int_{a}^{3a} \frac{x}{2a} dx = \left[\frac{x^2}{4a}\right]_{a}^{3a} = \frac{8a^2}{4a} = 2a$ $E(X^2) = \int_{a}^{3a} \frac{x^2}{2a} dx = \left[\frac{x^3}{6a}\right]_{a}^{3a} = \frac{13a^2}{3}$ $Var(X) = \frac{a^2}{3}$ (ii) $P(X - \mu < \sigma) = P(X - 2a < \frac{a}{\sqrt{3}}) = \frac{1}{2a} \times 2\frac{a}{\sqrt{3}} = 0.577$ Normal: $P(X - \mu < \sigma) = P(Z < 1) = 2(0.3413) = 0.683$	B1 M1 A1 M1 A1 A1 M1 A1 A1 M1 A1 A1	12
7.	(i) Must land on board, so $P(R \le r) = 0$ $(r < 0)$, $P(R \le r) = 1$ $(r > a)$ For $0 \le r \le a$, $P(R \le r) = $ ratio of areas $= \frac{\pi r^2}{\pi a^2} = \frac{r^2}{a^2}$ Differentiate to get $f(r) = \frac{2r}{a^2}$ $(0 \le r \le a)$; $f(r) = 0$ otherwise (ii) Mean $= \int_0^a 2r^2 / a^2 dr = [2r^3 / 3a^2]_0^a = 2a/3$ (iii) $\oint_{2/a} g(r)$	B1 B1 M1 A1 M1 A1 M1 A1	
	From graph, higher probability is nearer to O , so he is aiming at O (iv) Area under graph = $0.5 \times 2/a \times a = 1$; in addition, $g(r)$ is always positive, so it is a pdf	B2 D B1 B1 B1	13