1. A video rental shop needs to find out whether or not videos have been rewound when they are returned; it will do this by taking a sample of returned videos
(i) State one advantage and one disadvantage of taking a sample.
(ii) Criticise the sampling method of looking at just one particular shelf of videos.
2. The random variable X is modelled by a binomial distribution $\mathrm{B}(n, p)$, with $n=20$ and p unknown. It is suspected that $p=0.3$.
(i) Find the critical region for the test of $\mathrm{H}_{0}: p=0.3$ against $\mathrm{H}_{1}: p \neq 0.3$, at the 5% significance level.
(ii) Find the critical region if, instead, the alternative hypothesis is $\mathrm{H}_{3}: p<0.3$.
3. A random variable X has the distribution $\mathrm{B}(80,0 \cdot 375)$.
(i) Write down the mean and variance of X.
(ii) Use the Normal approximation to the binomial distribution to estimate $\mathrm{P}(X>40)$.
4. The length of time taken on a daily journey is normally distributed, with mean 13.6 minutes and standard deviation $4 \cdot 1$ minutes
(i) Find the probability that the journey takes longer than 20 minutes.
(ii) I wish to state a journey time which I know I will achieve in 90% of cases. What time should I give?
(iii) Find the probability that the mean time in 5 days' journeys is less than 10 minutes.
5. A traffic analyst is interested in the number of heavy lorries passing a certain junction.

He counts the number, x, of lorries passing in each of 100 five-minute intervals, and gets the following results : $\sum x=285, \quad \sum x^{2}=1117$.
(i) Calculate unbiased estimates of the mean and the variance of X.
(ii) Give a reason for thinking that X can be modelled by a Poisson distribution.

An environmental group claims that the distribution of X is indeed Poisson, but that the mean is higher and is in fact $4-2$. It is also known that the presence of 10 or more lorries in any fiveminute interval will cause severe congestion.
(iii) Assuming the environmentalists are right, find the probability of 10 or more lorries passing in a randomly chosen five-minute interval.
(iv) If, in the very first interval, only one lorry is counted, decide whether this is evidence against the environmentalists' claim, at the 5% significance level.

STATISTICS 2(C) TEST PAPER 9 Page 2

6. The random variable X has a continuous uniform distribution on the interval $a \leq X \leq 3 a$.
(i) Without assuming any standard results for this type of distribution, prove that μ, the mean value of X, is equal to $2 a$ and derive an expression for σ^{2}, the variance of X, in terms of a.
(ii) Find the probability that $|X-\mu|<\sigma$ and compare this with the same probability when x is modelled by a Normal distribution with the same mean and variance.
7. Two people are playing darts. Peg hits points randomly on the circular board, whose radius is a. The distance of the point that she hits from the centre O of the board is modelled by the continuous random variable R.
(i) Show that the probability that $R \leq r$ is given by

$$
\begin{array}{ll}
\mathrm{P}(R \leq r)=0 & r<0, \\
\mathrm{P}(R \leq r)=\frac{r^{2}}{a^{2}} & 0 \leq r \leq a, \\
\mathrm{P}(R \leq r)=1 & r>a,
\end{array}
$$

and hence show that the probability density function for R is given by

$$
\begin{array}{ll}
\mathrm{f}(r)=\frac{2 r}{a^{2}} & 0 \leq r \leq a \\
\mathrm{f}(r)=0 & \text { otherwise } \tag{6}
\end{array}
$$

(ii) Find the mean distance from O of the points that she hits.

Bob, a more experienced player, aims for O, and the points he hits have a distance X from O whose probability density function is

$$
\begin{array}{lc}
\mathrm{g}(x)=\frac{2}{a}-\frac{2 x}{a^{2}} & 0<x<a \\
\mathrm{~g}(x)=0 & \text { otherwise } .
\end{array}
$$

By sketching a graph of $\mathrm{g}(x)$,
(iii) explain why this function shows that the Bob is aiming for O.
(iv) Prove that $\mathrm{g}(x)$ is indeed a probability density function

STATISTICS 2 (C) TEST PAPER 9: ANSWERS AND MARK SCHEME

1. (i) Quicker to use a sample, but it may be inaccurate

Bl Bl
(ii) One particular sort, e.g. horror, may be unrepresentative

B2
2. (i) From tables, extreme 2.5% tails are given by $X \leq 1$ and $X \geq 11, \quad$ M1 A1 so this is the critical region
(ii) The bottom 5% tail is given by the region $\{0,1,2\}$

Al

The botron
M1 M1 A1
4

6
3. (i) Mean $=80 \times 0.375=30$, variance $=80 \times 0.375 \times 0.625=18.75 \quad \mathrm{~B} 1 \mathrm{Bl}$
(ii) $X \sim \mathrm{~B}(80,0.375) \approx \mathrm{N}(30,18.75)$
B1
$\mathrm{P}(X>40)=\mathrm{P}(X>40 \cdot 5)=\mathrm{P}(Z>10 \cdot 5 / 4 \cdot 33)=\mathrm{P}(Z>2 \cdot 42) \quad$ M1 A1
$=1-0.9922=0.0078$
Al

6
4. (i) $\mathrm{P}(X>20)=\mathrm{P}(Z>6 \cdot 4 / 4 \cdot 1)=\mathrm{P}(Z>1.561)=1-0.9407=0.0593 \mathrm{M} \mathrm{Al}$
(ii) 90th percentile given by $z=1 \cdot 282$, B1
so $T=13.6+1.282 \times 4.1=18.9$ minutes M1 A1
(iii) \bar{X} is distributed $\mathrm{N}\left(13 \cdot 6,4 \cdot 1^{2} / 5\right)$, so $\mathrm{P}(\bar{X}<10) \quad \mathrm{B} 1 \mathrm{~B} 1$
$=\mathrm{P}(Z<-3.6 /(41 / \sqrt{ } 5))=\mathrm{P}(Z<-1.963)=0.0248 \quad$ M1 Al
5. (i) Mean $=285 / 100=2.85$

B1
Variance $=1117 / 99-(100 / 99) \times 2.85^{2}=3.08$
M1 Al
(ii) Mean \approx Variance

B1
(iii) $\mathrm{H}_{0}: \lambda=4.2$

B1
Under $\mathrm{H}_{0}, \mathrm{P}(X>9)=1-0.9889=0.0111$
M1 A1
(iv) Under $\mathrm{H}_{0}, \mathrm{P}(X<2)=0.0780>5 \%$ so do not reject H_{0}

M1 A1 A1
10
6.
$\begin{array}{rll}\begin{array}{ll}\text { (i) } \mathrm{f}(x)=\frac{1}{2 a}, a \leq x \leq 3 a & \mathrm{E}(X)=\int_{a}^{3 a} \frac{x}{2 a} \mathrm{~d} x=\left[\frac{x^{2}}{4 a}\right]_{a}^{3 a}=\frac{8 a^{2}}{4 a}=2 a\end{array} & \text { B1 M1 A1 } \\ \mathrm{E}\left(X^{2}\right)=\int_{a}^{3 a} \frac{x^{2}}{2 a} \mathrm{~d} x=\left[\frac{x^{3}}{6 a}\right]_{a}^{3 a}=\frac{13 a^{2}}{3} & \operatorname{Var}(X)=\frac{a^{2}}{3} & \text { M1 A1 A1 } \\ \text { (ii) } \mathrm{P}(|X-\mu|<\sigma)=\mathrm{P}\left(|X-2 a|<\frac{a}{\sqrt{3}}\right)=\frac{1}{2 a} \times 2 \frac{a}{\sqrt{3}}=0.577 & \text { M1 A1 A1 } \\ \text { Normal : } \mathrm{P}(|X-\mu|<\sigma)=\mathrm{P}(|Z|<1)=2(0.3413)=0.683 & \text { M1 A1 A1 }\end{array}$
12
7. (i) Must land on board, so $\mathrm{P}(R \leq r)=0(r<0), \mathrm{P}(R \leq r)=1(r>a) \mathrm{BlBl}$ For $0 \leq r \leq a, \mathrm{P}(R \leq r)=$ ratio of areas $=\frac{\pi r^{2}}{\pi a^{2}}=\frac{r^{2}}{a^{2}} \quad$ M1 A1
Differentiate to get $\mathrm{f}(r)=\frac{2 r}{a^{2}}(0 \leq r \leq a) ; \mathrm{f}(r)=0$ otherwise \quad M1 A1
(ii) Mean $=\int_{0}^{a} 2 r^{2} / a^{2} \mathrm{~d} r=\left[2 r^{3} / 3 a^{2}\right]_{0}^{a}=2 a / 3$

M1 A1
(iii)

From graph, higher probability is nearer to O, so he is aiming at $O \quad$ B1
(iv) Area under graph $=0.5 \times 2 / a \times a=1$; in addition, $g(r)$ is always $B 1$ positive, so it is a pdf

B1

